from nebula_client import NebulaClientclient = NebulaClient(api_key="your-api-key")# Store a memorymemory_id = client.store_memory({ "cluster_id": "research-cluster", "content": "Machine learning automates analytical model building", "metadata": {"topic": "AI", "difficulty": "intermediate"}})
Multiple memories:
Copy
from nebula_client import NebulaClientclient = NebulaClient(api_key="your-api-key")# Store multiple memories at oncememories = [ { "cluster_id": "research-cluster", "content": "Supervised learning uses labeled training data", "metadata": {"type": "definition", "topic": "ML"} }, { "cluster_id": "research-cluster", "content": "Neural networks are inspired by biological systems", "metadata": {"type": "concept", "topic": "AI"} }]memory_ids = client.store_memories(memories)
Conversation messages:
Copy
from nebula_client import NebulaClientclient = NebulaClient(api_key="your-api-key")# Store conversation with rolesconversation_id = client.store_memory({ "cluster_id": "support-cluster", "content": "Hello! How can I help you?", "role": "assistant", "metadata": {"session_id": "session_123"}})# User responseclient.store_memory({ "cluster_id": "support-cluster", "content": "I need help with my account", "role": "user", "parent_id": conversation_id})
from nebula_client import NebulaClientclient = NebulaClient(api_key="your-api-key")# Retrieve a memory by IDmemory = client.get_memory(memory_id)print(f"Content: {memory.content}")print(f"Metadata: {memory.metadata}")print(f"Created: {memory.created_at}")
List memories in cluster:
Copy
from nebula_client import NebulaClientclient = NebulaClient(api_key="your-api-key")# List memories in a clustermemories = client.list_memories( cluster_ids=["research-cluster"], limit=20, offset=0)for memory in memories: print(f"ID: {memory.id}") print(f"Content: {memory.content[:60]}...") print(f"Created: {memory.created_at}")